Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1171: 122641, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1126911

ABSTRACT

Remdesivir, formerly GS-5734, has recently become the first antiviral drug approved by the U.S. Food and Drug Administration (FDA) to treat COVID-19, the disease caused by SARS-CoV-2. Therapeutic dosing and pharmacokinetic studies require a simple, sensitive, and selective validated assay to quantify drug concentrations in clinical samples. Therefore, we developed a rapid and sensitive LC-MS/MS assay for the quantification of remdesivir in human plasma with its deuterium-labeled analog, remdesivir-2H5, as the internal standard. Chromatographic separation was achieved on a Phenomenex® Synergi™ HPLC Fusion-RP (100 × 2 mm, 4 µm) column by gradient elution. Excellent accuracy and precision (<5.2% within-run variations and. <9.8% between-run variations) were obtained over the range of 0.5-5000 ng/mL. The assay met the FDA Bioanalytical Guidelines for selectivity and specificity, and low inter-matrix lot variability (<2.7%) was observed for extraction efficiency (77%) and matrix effect (123%) studies. Further, stability tests showed that the analyte does not degrade under working conditions, nor during freezing and thawing processes.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/blood , COVID-19 Drug Treatment , Drug Monitoring/methods , Tandem Mass Spectrometry/methods , Adenosine Monophosphate/blood , Alanine/blood , Chromatography, High Pressure Liquid/economics , Chromatography, High Pressure Liquid/methods , Drug Monitoring/economics , Female , Humans , Limit of Detection , Male , Tandem Mass Spectrometry/economics
2.
Oncologist ; 26(4): 288-e541, 2021 04.
Article in English | MEDLINE | ID: covidwho-1068692

ABSTRACT

LESSONS LEARNED: Despite the initial optimism for using immune checkpoint inhibition in the treatment of multiple myeloma, subsequent clinical studies have been disappointing. Preclinical studies have suggested that priming the immune system with various modalities in addition to checkpoint inhibition may overcome the relative T-cell exhaustion or senescence; however, in this small data set, radiotherapy with checkpoint inhibition did not appear to activate the antitumor immune response. BACKGROUND: Extramedullary disease (EMD) is recognized as an aggressive subentity of multiple myeloma (MM) with a need for novel therapeutic approaches. We therefore designed a proof-of-principle pilot study to evaluate the synergy between the combination of the anti-PD-L1, avelumab, and concomitant hypofractionated radiotherapy. METHODS: This was a single-arm phase II Simon two-stage single center study that was prematurely terminated because of the COVID-19 pandemic after enrolling four patients. Key eligibility included patients with relapsed/refractory multiple myeloma (RRMM) who had exhausted or were not candidates for standard therapy and had at least one lesion amenable to radiotherapy. Patients received avelumab until progression or intolerable toxicity and hypofractionated radiotherapy to a focal lesion in cycle 2. Radiotherapy was delayed until cycle 2 to allow the avelumab to reach a study state, given the important observation from previous studies that concomitant therapy is needed for the abscopal effect. RESULTS: At a median potential follow-up of 10.5 months, there were no objective responses, one minimal response, and two stable disease as best response. The median progression-free survival (PFS) was 5.3 months (95% confidence interval [CI]: 2.5-7.1 months), and no deaths occurred. There were no grade ≥3 and five grade 1-2 treatment-related adverse events. CONCLUSION: Avelumab in combination with radiotherapy for patients with RRMM and EMD was associated with very modest systemic clinical benefit; however, patients did benefit as usual from local radiotherapy. Furthermore, the combination was very well tolerated compared with historical RRMM treatment regimens.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Multiple Myeloma , Aged , Aged, 80 and over , COVID-19 , Female , Humans , Male , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/radiotherapy , Pandemics , Pilot Projects
3.
Pharmacotherapy ; 40(8): 857-868, 2020 08.
Article in English | MEDLINE | ID: covidwho-911866

ABSTRACT

Given the global nature of the coronavirus disease 2019 (COVID-19) pandemic, the need for disease detection and expanding testing capacity remains critical priorities. This review discusses the technological advances in testing capability and methodology that are currently used or in development for detecting the novel coronavirus. We describe the current clinical diagnostics and technology, including molecular and serological testing approaches, for severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) testing as well as address their advantages and limitations. Nucleic acid amplification technology for molecular diagnostics remains the gold standard for virus detection. We highlight alternative molecular detection techniques used for developing novel COVID-19 diagnostics on the horizon. Antibody response against SARS-CoV-2 remains poorly understood and proper validation of serology tests is necessary to demonstrate their accuracy and clinical utility. In order to bring the pandemic under control, we must speed up the development of rapid and widespread testing through improvements in clinical diagnostics and testing technology as well as access to these tools.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Clinical Protocols , Diagnostic Errors , Humans , Pandemics , Point-of-Care Systems , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests/methods , World Health Organization
4.
Semin Oncol ; 47(5): 335-340, 2020 10.
Article in English | MEDLINE | ID: covidwho-610872

ABSTRACT

COVID-19 has a clear sex disparity in clinical outcome. Globally, infection rates between men and women are similar; however, men are more likely to have more severe disease and are more likely to die. The causes for this disparity are currently under investigation and are most likely multifactorial. Sex hormones play an important role in the immune response with estrogen seen as immune boosting and testosterone as immunosuppressing. Additionally, an important protease involved in viral entry, TMPRSS2, is regulated by androgens. Many observational and prospective studies are ongoing or initiating to further examine the role of sex hormones in SARS-CoV-2 infection and if modulation of them is a realistic treatment option.


Subject(s)
COVID-19 Drug Treatment , Gonadal Steroid Hormones/metabolism , Outcome Assessment, Health Care/statistics & numerical data , Serine Endopeptidases/metabolism , Androgen Antagonists/therapeutic use , COVID-19/epidemiology , COVID-19/metabolism , Female , Humans , Male , Outcome Assessment, Health Care/methods , Pandemics , Protease Inhibitors/therapeutic use , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL